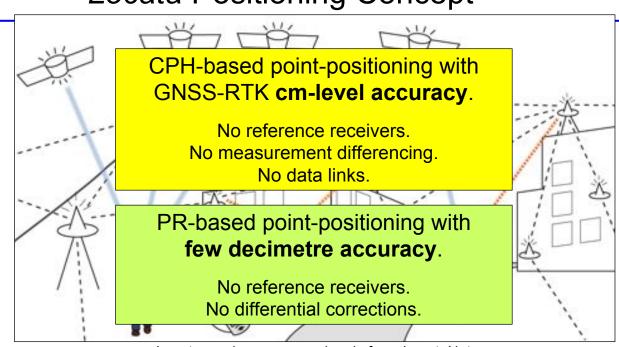


Independent Testing of Locata: A New High Accuracy Indoor Positioning Systems

Chris Rizos & Binghao Li

Never Stand Still


School of Surveying & Spatial Information Systems, UNSW, Sydney, Australia

Introductory Remarks

- GNSS signals can be obstructed outdoors leading to loss of availability, & are vulnerable to RFI.
- GNSS signals are attenuated indoors, & cannot give performance similar to outdoors.
- APNT systems such as Locata can address availability issues both outdoors & indoors, for land and air applications, including at cm-accuracy.
- New directional antenna technology appears to have addressed multipath & RFI issues.
- Now have option for indoor *local positioning system* with similar performance as (unobstructed GNSS).

UNSW THE UNIVERSITY OF NEW SOUTH WALES

Locata Positioning Concept

Locata receiver can use signals from LocataNet.
Integrated Locata & GNSS receiver possible for certain applications.
But once a LocataNet is established it can operate independently of GNSS.

Locata Current System

Signal Structure

- Licence-free ISM frequency band (2.4GHz)
- Dual-frequency carriers
- Bespoke CDMA PRN codes ICD released Sept 2011 at ION-GNSS
- Precise TDMA pulsing for near-far problem
- >1 Watt output power range of over 10's km

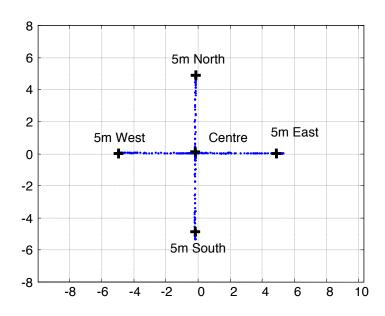
LocataLite

- Time-synchronised transceiver network
- Dual Tx antennas
- Prototype has modular board design based on FPGA technology
- Uses low-cost clock (TCXO), shared by receiver section

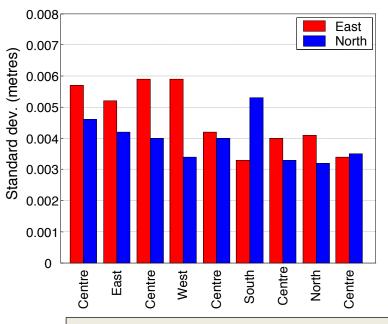
Locata Receiver

- CPH or PR single point-positioning
- CPH AR at known point or OTF
- Real-time positioning at 10Hz

LocataLite Setup


Industrial Machine Tracking Locata 2004

BlueScope Steelworks crane tracking (Wollongong, Australia)


Industrial Machine Tracking Locata 2004

Crane tongs moved to 9 known points (measured with Total Station).

Industrial Machine Tracking Locata 2004

Crane tongs moved to 9 known points (measured with Total Station).

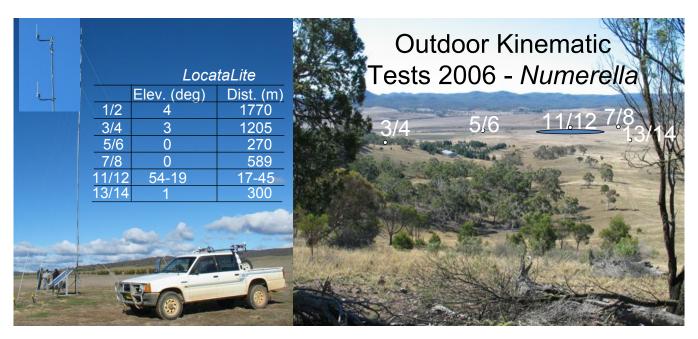
Accuracy -

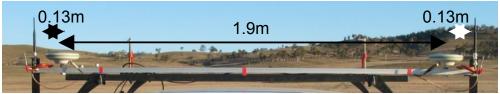
Max position error 1.8 cm

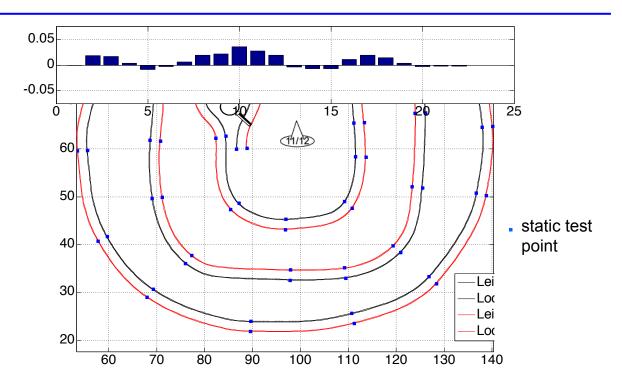
Precision -

Standard deviation < 0.6 cm

But multipath caused BIG problems



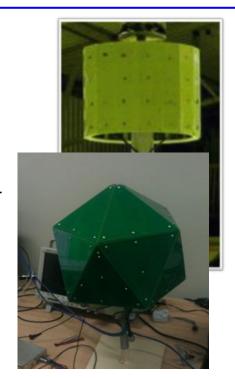




Trajectory GPS-RTK vs. Locata

Indoor Testing September 2010

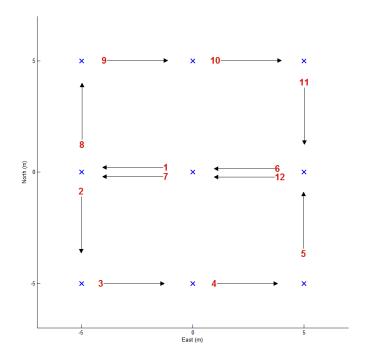
• Indoor experiments conducted in a metal shed at Numerella (30m! 15m).



Severe multipath environment for signals.

TimeTenna

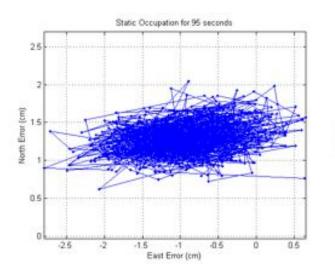
- Uses an array of antenna elements & SW-controlled directional beams.
- Takes advantage of Locata's proprietary signal structure and time synchronisation.
- Dynamically tracks only direct line-of-sight ranging signals.
- Prototype 3D design.

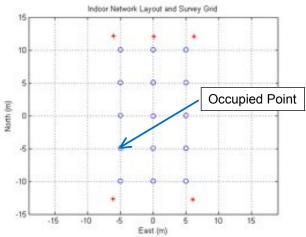


Indoor Test Setup

Static Test

- Receiver moved between adjacent marked points.
- Static for at least one minute per point.

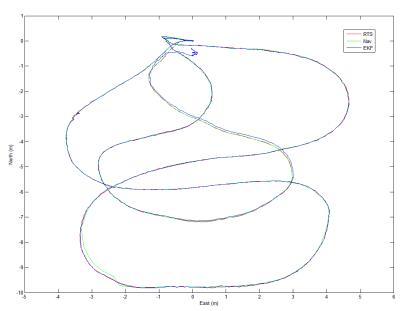

Static Results


- RTS solutions considered as 'truth'.
- Nav Engine: (mostly) better than 2cm accuracy.
- EKF-based: better than 3cm accuracy (after convergence).

Point Index	Nav Error Distance (mm)	EKF Error Distance (mm)	
1	7.0	633.0	
2	19.7	287.9	
3	12.8	7.1	
4	7.1	12.2	
5	2.9	6.5	
6	5.2	23.5	
7	9.3	24.7	
8	0.7	16.9	
9	42.6	0.3	
10	18.5	5.5	
11	12.1	21.0	
12	8.7	23.0	
13	8.5	16.3	

Positioning Test Results

MEAN - E:-0.00940,N:0.0129 1" RMS - E:0.0111,N:0.0131



Kinematic Test

- Receiver started on initial known point.
- Moved continuously in a random pattern.
- The EKF-based solution converges after some initial movement.
- A visual inspection of the results confirms relative accuracy performance.

Kinematic Results

Majority of the trajectory errors less than 3cms

Orientation Test Results

	Mean error	Max	95% RMS
	(deg)	absolute	error (deg)
		error (deg)	
0 Degrees	0.0555	1.2423	0.6336
90 Degrees	-0.1560	1.0121	0.6782
180 Degrees	0.3789	1.0303	0.7150
270 Degrees	-0.1595	1.0442	0.6317

Indoor Demos at ION-GNSS 2011

Concluding Remarks

- First indoor tests in September 2010 of Locata's new prototype antenna successfully demonstrated multipath mitigation.
- Live demos at ION-GNSS in September 2011.
- Robust cm-level indoor positioning accuracy for industrial applications is now a reality.
- Orientation accuracy at <1deg, using single antenna.
- ICD released at ION-GNSS.

